
Pour chaque question, choisir parmi les réponses a); b); c) et d) la bonne. Pour chaque énoncé incomplet, choisir parmi les suites possibles a); b); c) et d) proposées, une qui puisse le rendre correct. CHAQUE BONNE REPONSE VAUT 1 POINT ET CHAQUE MAUVAISE -0.5 POINT.

- 1) Une nouvelle hausse de 15% sur le prix du tabac survient aujourd'hui à la suite d'une 1ère augmentation de 10% en début d'année. Quel sera alors le taux final d'augmentation du prix depuis le début d'année ?
- a) 30 %
- b) 25%
- c) 26,5%
- ; d) 24,5% .
- 2) Les tas de foin ont le même volume et se mangent avec le même appétit au fil du temps par des bœufs. Si 12 bœufs mangent 3 tas de foin en 15 jours, combien faudrat-il de bœufs pour manger 5 tas de foin en 10 jours ?
- a) 20
- b) 30

- 3) Un terrain a la forme du cerf-volant suivant

Déterminer la valeur exacte de sin Θ .

- a) Sin $\Theta = 3/5$;
- b) $\sin \Theta = 4/5$
- c) $\sin \theta = 3/4$
- d) $\sin \theta = 3/2$.
- 4) trois chevaux A, B et C font une course. (Pas d'ex aequo). Un parieur mise sur certaine somme sur chacun d'eux. Si A arrive le premier, on lui rembourse 5 fois la somme misée sur A; si B arrive le premier, on lui rembourse 2 fois la somme misée sur B ; si C arrive le premier, on lui rembourse 6 fois la somme misée sur C.

Quelle doit-il miser respectivement sur A, B et C pour avoir un gain effectif de 30 000 F, ceci quel que soit le cheval qui arrive le premier?

- a) 40 000, 100 000 et 30 000 ; b) 42 000, 105 000 et 33 000 ;
 - b) 45 000, 112 500 et 37 500 ; d) 55 000, 112 500 et 38 000.
- 5) Combien de couples d'entiers naturels (x, y) sont tels que x+2y < 6

www.touslesconcours.info
a) 8 ; b) 12 ; d) 6 ; c) 10.
6) n est un entier naturel donné. La simplification du nombre $\frac{(8^{n+1}+8^n)^2}{(4^n-4^{n-1})^2}$ donne :
a) 2^{2n} ; b) 63 504 ; c) 65 536 ; d) 36 864.
7) Pour quelles valeurs du réel x peut-on construire un triangle de côtés 3, 4 et 2+x?
a) $1 < x < 9$; b) $-1 < x < 8$; c) $-1 < x < 7$; d) $1 < x < 8$.
8) $\cos \pi$, $\cos 2\pi$, $\cos 3\pi$, $\cos 4\pi$, sont des termes consécutifs d'une suite
a) arithmétique; b) géométrique; c) constante; d) croissante.
9) ABCDEFGH est un cube d'arête 40. I est le milieu de [BC]. Calculer (la distance) EI.
a) $EI=80$; b) $EI=60$; c) $EI=70$; d) $EI=55$.
10) Cinq personne doivent s'asseoir sur un long banc de cinq places. De combien de façons peuvent-ils le faire si l'unique vieillard du groupe doit s'asseoir à l'un des extrémités du banc ?
a) 48 ; b) 120 ; c) 3 125 ; d) 25.
11) Un architecte camerounais (en Europe) a en janvier dernier changé 375 000 F au taux d'échange de 625 F pour 1 €.Ce moi, il a changé 270 000 F au taux de 675 pour 1€. Déterminer pour l'ensemble de ces deux échanges, le taux moyen d'échange pour un euro.
a) 655 F pour 1 €; b) 650 F pour 1 € ; c) 645 F pour un 1€
d) 660 F pour 1 €.
12) f est une fonction de $\mathbb R$ vers $\mathbb R$ avec $f(x)= 1-x + x $. La courbe $(\mathcal C_f)$ de f est constituée
a) d'une demi-droite ; b) de deux demi-droites

13) L'inéquation $-\ln^2 x + 2\ln x - 1 < 0$ dans \mathbb{R} a pour ensemble de solution a) $\{e\}$; b) \emptyset ; c) $]0; +\infty[$; d) $]0; +\infty[-\{e\}.$

segment.

c) de deux demi-droites et un segment ; c) d'une demi-droite et d'un

14) On considère dans \mathbb{C} , l'équation (Σ) : $z^4-6z^3+18z^2-24z+16=0$. Si z_0 est une solution de (Σ) , déterminer (parmi les complexes suivants) une autre solution:

a) $-z_0$; b) $1/z_0$; c) $4/z_0$; d) $-1/z_0$.

15) L'ensemble de solution de l'équation différentielle y''-10y'+25y=10 est constituée

a) des fonctions $f: x \mapsto (Ax + B)e^{5x}$; b) des fonctions $f: x \mapsto (Ax + B)e^{5x} + 0.4$

c) des fonctions $f: x \mapsto (Ax + B)e^{5x} + 10$; d) des fonctions $f: x \mapsto Ae^{5x} + 10$

16) Déterminer $\lim_{n\to +\infty} (1+\frac{1}{n})^n$

a) 1 ; b) e ; c) $\frac{1}{e}$; d) $+\infty$.

17) On donne $I = \int_0^{\frac{\pi}{2}} e^{-x} \sin x dx$ et $J = \int_0^{\frac{\pi}{2}} e^{-x} \cos x dx$. A l'aide d'une intégration par parties, on a l'égalité

a) I + J = 1; b) I + J = 2; c) $I = -J + \pi/2$; d) I = -J - 1.

18) Dans une certaine famille, on a 25% de chance d'obtenir un garçon à la suite d'une naissance. Quelle est la probabilité d'obtenir 3 garçons après cinq naissances ?

a) $\frac{9}{1024}$; b) $\frac{45}{512}$; c) $\frac{3}{10}$; d) $\frac{3}{5}$.

19) Pour tout x de \mathbb{R} , que vaut l'intégrale $\int_0^x \cos 2t \sin^3 2t dt$?

a) $\sin 2x \cos^3 2x$; b) $\frac{1}{4} \sin^4 2x$; c) $\frac{1}{8} \sin^4 2x$

d) $\frac{1}{3}\sin 2x \cos^3 2x .$

20) f est une fonction de \mathbb{R} vers \mathbb{R} avec $f(x) = x + xe^{-x}$. Que montre le tableau de variation de f' et l'étude des branches infinies de la courbe (\mathcal{C}_f) de f

a) f est décroissante sur \mathbb{R} et (\mathcal{C}_f) a une asymptote;

b) f est croissante sur \mathbb{R} et (\mathcal{C}_f) a une asymptote;

c) f est décroissante sur \mathbb{R} et (\mathcal{C}_f) n'a pas d'asymptote;

d) f est croissante sur \mathbb{R} et (\mathcal{C}_f) n'a pas d'asymptote.